Leveraging post-click feedback for content recommendations

Implicit feedback (e.g., clicks) is widely used in content recommendations. However, clicks only reflect user preferences according to their first impressions. They do not capture the extent to which users continue to engage with the content. Our analysis shows that more than half of the clicks on music and short videos are followed by skips from two real-world datasets. In this paper, we leverage post-click feedback, e.g. skips and completions, to improve the training and evaluation of content recommenders. Specifically, we experiment with existing collaborative filtering algorithms and find that they perform poorly against post-click-aware ranking metrics. Based on these insights, we develop a generic probabilistic framework to fuse click and post-click signals. We show how our framework can be applied to improve pointwise and pairwise recommendation models. Our approach is shown to outperform existing methods by 18.3% and 2.5% respectively in terms of Area Under the Curve (AUC) on the short-video and music dataset. We discuss the effectiveness of our approach across content domains and trade-offs in weighting various user feedback signals.

Sign In


Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.